Publications
O. Carballal. New Lie systems from Goursat distributions: reductions and reconstructions. In Geometric Science of Information. GSI 2025, Lecture Notes in Computer Science, vol. 16035, F. Nielsen and F. Barbaresco (eds.), Springer, Cham (2025) 311β319. DOI: 10.1007/978-3-032-03924-8_32. Β arXiv:2505.06231 [math.DS].
O. Carballal, R. Campoamor-Stursberg and F. J. Herranz. LieβHamilton Systems Associated with the Symplectic Lie Algebra π°π(6, β). J. Geom. Symmetry Phys. 69 (2024) 37β57. Β DOI: 10.7546/jgsp-69-2024-37-57. arXiv:2409.18489 [math-ph].
R. Campoamor-Stursberg, O. Carballal and F. J. Herranz. A representation-theoretical approach to higher-dimensional LieβHamilton systems: The symplectic Lie algebra π°π(4, β). Commun. Nonlinear Sci. Numer. Simul. 141 (2025) 108452. DOI: 10.1016/j.cnsns.2024.108452. arXiv: 2406.17479 [math-ph].
R. Campoamor-Stursberg, O. Carballal and F. J. Herranz. LieβHamilton systems on Riemannian and Lorentzian spaces from conformal transformations and some of their applications. J. Phys. A: Math. Theor. 57Β (2024) 485203. DOI: 10.1088/1751-8121/ad8e1d. arXiv:2407.01500 [math-ph].
Preprints
R. Campoamor-Stursberg, O. Carballal and F. J. Herranz. Contact Lie systems on Riemannian and Lorentzian spaces: from scaling symmetries to curvature-dependent reductions. arXiv:2503.20558 [math-ph].
Collaborators
Rutwig Campoamor-Stursberg (Department of Algebra, Geometry and Topology, Universidad Complutense de Madrid, Spain)
Eduardo Fernandez-Saiz (Department of Quantitative Methods, CUNEF University, Spain)
Francisco J. Herranz (Department of Physics, University of Burgos, Spain)
Javier de Lucas (Department of Mathematical Methods in Physics, University of Warsaw, Poland)
Tomasz Sobczak (Department of Mathematical Methods in Physics, University of Warsaw, Poland)