Publications
O. Carballal, R. Campoamor-Stursberg and F. J. Herranz. Lie–Hamilton Systems Associated with the Symplectic Lie Algebra 𝔰𝔭(6, ℝ). J. Geom. Symmetry Phys. 69 (2024) 37–57. DOI: 10.7546/jgsp-69-2024-37-57. arXiv:2409.18489 [math-ph].
R. Campoamor-Stursberg, O. Carballal and F. J. Herranz. A representation-theoretical approach to higher-dimensional Lie–Hamilton systems: The symplectic Lie algebra 𝔰𝔭(4, ℝ). Commun. Nonlinear Sci. Numer. Simul. 141 (2025) 108452. DOI: 10.1016/j.cnsns.2024.108452. arXiv: 2406.17479 [math-ph].
R. Campoamor-Stursberg, O. Carballal and F. J. Herranz. Lie–Hamilton systems on Riemannian and Lorentzian spaces from conformal transformations and some of their applications. J. Phys. A: Math. Theor. 57 (2024) 485203. DOI: 10.1088/1751-8121/ad8e1d. arXiv:2407.01500 [math-ph].
Preprints
O. Carballal. New Lie systems from Goursat distributions: reductions and reconstructions. arXiv:2505.06231 [math.DS].
R. Campoamor-Stursberg, O. Carballal and F. J. Herranz. Contact Lie systems on Riemannian and Lorentzian spaces: from scaling symmetries to curvature-dependent reductions. arXiv:2503.20558 [math-ph].
Collaborators
Rutwig Campoamor-Stursberg (Department of Algebra, Geometry and Topology, Universidad Complutense de Madrid, Spain)
Eduardo Fernandez-Saiz (Department of Quantitative Methods, CUNEF University, Spain)
Francisco J. Herranz (Department of Physics, University of Burgos, Spain)
Javier de Lucas (Department of Mathematical Methods in Physics, University of Warsaw, Poland)
Tomasz Sobczak (Department of Mathematical Methods in Physics, University of Warsaw, Poland)